Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Commun Biol ; 6(1): 1168, 2023 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-37968381

RESUMO

Opioid-dependent immune-mediated analgesic effects have been broadly reported upon inflammation. In preclinical mouse models of intestinal inflammatory diseases, the local release of enkephalins (endogenous opioids) by colitogenic T lymphocytes alleviate inflammation-induced pain by down-modulating gut-innervating nociceptor activation in periphery. In this study, we wondered whether this immune cell-derived enkephalin-mediated regulation of the nociceptor activity also operates under steady state conditions. Here, we show that chimeric mice engrafted with enkephalin-deficient bone marrow cells exhibit not only visceral hypersensitivity but also an increase in both epithelial paracellular and transcellular permeability, an alteration of the microbial topography resulting in increased bacteria-epithelium interactions and a higher frequency of IgA-producing plasma cells in Peyer's patches. All these alterations of the intestinal homeostasis are associated with an anxiety-like behavior despite the absence of an overt inflammation as observed in patients with irritable bowel syndrome. Thus, our results show that immune cell-derived enkephalins play a pivotal role in maintaining gut homeostasis and normal behavior in mice. Because a defect in the mucosal opioid system remarkably mimics some major clinical symptoms of the irritable bowel syndrome, its identification might help to stratify subgroups of patients.


Assuntos
Síndrome do Intestino Irritável , Humanos , Animais , Camundongos , Analgésicos Opioides , Encefalinas/genética , Inflamação , Dor
2.
Gut ; 72(5): 939-950, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36241390

RESUMO

OBJECTIVES: Clinical studies revealed that early-life adverse events contribute to the development of IBS in adulthood. The aim of our study was to investigate the relationship between prenatal stress (PS), gut microbiota and visceral hypersensitivity with a focus on bacterial lipopeptides containing γ-aminobutyric acid (GABA). DESIGN: We developed a model of PS in mice and evaluated, in adult offspring, visceral hypersensitivity to colorectal distension (CRD), colon inflammation, barrier function and gut microbiota taxonomy. We quantified the production of lipopeptides containing GABA by mass spectrometry in a specific strain of bacteria decreased in PS, in PS mouse colons, and in faeces of patients with IBS and healthy volunteers (HVs). Finally, we assessed their effect on PS-induced visceral hypersensitivity. RESULTS: Prenatally stressed mice of both sexes presented visceral hypersensitivity, no overt colon inflammation or barrier dysfunction but a gut microbiota dysbiosis. The dysbiosis was distinguished by a decreased abundance of Ligilactobacillus murinus, in both sexes, inversely correlated with visceral hypersensitivity to CRD in mice. An isolate from this bacterial species produced several lipopeptides containing GABA including C14AsnGABA. Interestingly, intracolonic treatment with C14AsnGABA decreased the visceral sensitivity of PS mice to CRD. The concentration of C16LeuGABA, a lipopeptide which inhibited sensory neurons activation, was decreased in faeces of patients with IBS compared with HVs. CONCLUSION: PS impacts the gut microbiota composition and metabolic function in adulthood. The reduced capacity of the gut microbiota to produce GABA lipopeptides could be one of the mechanisms linking PS and visceral hypersensitivity in adulthood.


Assuntos
Microbioma Gastrointestinal , Síndrome do Intestino Irritável , Masculino , Feminino , Camundongos , Animais , Síndrome do Intestino Irritável/microbiologia , Disbiose , Fezes/microbiologia , Inflamação
3.
J Transl Med ; 20(1): 111, 2022 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-35255932

RESUMO

The human gastrointestinal tract is inhabited by the largest microbial community within the human body consisting of trillions of microbes called gut microbiota. The normal flora is the site of many physiological functions such as enhancing the host immunity, participating in the nutrient absorption and protecting the body against pathogenic microorganisms. Numerous investigations showed a bidirectional interplay between gut microbiota and many organs within the human body such as the intestines, the lungs, the brain, and the skin. Large body of evidence demonstrated, more than a decade ago, that the gut microbial alteration is a key factor in the pathogenesis of many local and systemic disorders. In this regard, a deep understanding of the mechanisms involved in the gut microbial symbiosis/dysbiosis is crucial for the clinical and health field. We review the most recent studies on the involvement of gut microbiota in the pathogenesis of many diseases. We also elaborate the different strategies used to manipulate the gut microbiota in the prevention and treatment of disorders. The future of medicine is strongly related to the quality of our microbiota. Targeting microbiota dysbiosis will be a huge challenge.


Assuntos
Microbioma Gastrointestinal , Microbiota , Probióticos , Disbiose/terapia , Trato Gastrointestinal , Humanos , Prebióticos , Probióticos/uso terapêutico
4.
Sci Rep ; 12(1): 1415, 2022 01 26.
Artigo em Inglês | MEDLINE | ID: mdl-35082330

RESUMO

Intestinal gluconeogenesis (IGN), gastric bypass (GBP) and gut microbiota positively regulate glucose homeostasis and diet-induced dysmetabolism. GBP modulates gut microbiota, whether IGN could shape it has not been investigated. We studied gut microbiota and microbiome in wild type and IGN-deficient mice, undergoing GBP or not, and fed on either a normal chow (NC) or a high-fat/high-sucrose (HFHS) diet. We also studied fecal and urine metabolome in NC-fed mice. IGN and GBP had a different effect on the gut microbiota of mice fed with NC and HFHS diet. IGN inactivation increased abundance of Deltaproteobacteria on NC and of Proteobacteria such as Helicobacter on HFHS diet. GBP increased abundance of Firmicutes and Proteobacteria on NC-fed WT mice and of Firmicutes, Bacteroidetes and Proteobacteria on HFHS-fed WT mice. The combined effect of IGN inactivation and GBP increased abundance of Actinobacteria on NC and the abundance of Enterococcaceae and Enterobacteriaceae on HFHS diet. A reduction was observed in the amounf of short-chain fatty acids in fecal (by GBP) and in both fecal and urine (by IGN inactivation) metabolome. IGN and GBP, separately or combined, shape gut microbiota and microbiome on NC- and HFHS-fed mice, and modify fecal and urine metabolome.


Assuntos
Derivação Gástrica/métodos , Microbioma Gastrointestinal/fisiologia , Gluconeogênese/fisiologia , Intestinos/metabolismo , Metaboloma , Estômago/metabolismo , Actinobacteria/classificação , Actinobacteria/genética , Actinobacteria/isolamento & purificação , Animais , DNA Bacteriano/genética , Enterobacteriaceae/classificação , Enterobacteriaceae/genética , Enterobacteriaceae/isolamento & purificação , Enterococcaceae/classificação , Enterococcaceae/genética , Enterococcaceae/isolamento & purificação , Ácidos Graxos Voláteis/metabolismo , Firmicutes/classificação , Firmicutes/genética , Firmicutes/isolamento & purificação , Intestinos/microbiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Filogenia , Proteobactérias/classificação , Proteobactérias/genética , Proteobactérias/isolamento & purificação , Estômago/microbiologia , Estômago/cirurgia
5.
Microbiome ; 9(1): 104, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33962692

RESUMO

BACKGROUND: The gut microbiome and iron status are known to play a role in the pathophysiology of non-alcoholic fatty liver disease (NAFLD), although their complex interaction remains unclear. RESULTS: Here, we applied an integrative systems medicine approach (faecal metagenomics, plasma and urine metabolomics, hepatic transcriptomics) in 2 well-characterised human cohorts of subjects with obesity (discovery n = 49 and validation n = 628) and an independent cohort formed by both individuals with and without obesity (n = 130), combined with in vitro and animal models. Serum ferritin levels, as a markers of liver iron stores, were positively associated with liver fat accumulation in parallel with lower gut microbial gene richness, composition and functionality. Specifically, ferritin had strong negative associations with the Pasteurellaceae, Leuconostocaceae and Micrococcaea families. It also had consistent negative associations with several Veillonella, Bifidobacterium and Lactobacillus species, but positive associations with Bacteroides and Prevotella spp. Notably, the ferritin-associated bacterial families had a strong correlation with iron-related liver genes. In addition, several bacterial functions related to iron metabolism (transport, chelation, heme and siderophore biosynthesis) and NAFLD (fatty acid and glutathione biosynthesis) were also associated with the host serum ferritin levels. This iron-related microbiome signature was linked to a transcriptomic and metabolomic signature associated to the degree of liver fat accumulation through hepatic glucose metabolism. In particular, we found a consistent association among serum ferritin, Pasteurellaceae and Micrococcacea families, bacterial functions involved in histidine transport, the host circulating histidine levels and the liver expression of GYS2 and SEC24B. Serum ferritin was also related to bacterial glycine transporters, the host glycine serum levels and the liver expression of glycine transporters. The transcriptomic findings were replicated in human primary hepatocytes, where iron supplementation also led to triglycerides accumulation and induced the expression of lipid and iron metabolism genes in synergy with palmitic acid. We further explored the direct impact of the microbiome on iron metabolism and liver fact accumulation through transplantation of faecal microbiota into recipient's mice. In line with the results in humans, transplantation from 'high ferritin donors' resulted in alterations in several genes related to iron metabolism and fatty acid accumulation in recipient's mice. CONCLUSIONS: Altogether, a significant interplay among the gut microbiome, iron status and liver fat accumulation is revealed, with potential significance for target therapies. Video abstract.


Assuntos
Microbioma Gastrointestinal , Hepatopatia Gordurosa não Alcoólica , Animais , Microbioma Gastrointestinal/genética , Ferro , Camundongos , Obesidade
6.
JHEP Rep ; 3(2): 100214, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33604531

RESUMO

BACKGROUND & AIMS: As the composition of the bile acid (BA) pool has a major impact on liver pathophysiology, we studied its regulation by the BA receptor Takeda G protein coupled receptor (TGR5), which promotes hepatoprotection against BA overload. METHODS: Wild-type, total and hepatocyte-specific TGR5-knockout, and TGR5-overexpressing mice were used in: partial (66%) and 89% extended hepatectomies (EHs) upon normal, ursodeoxycholic acid (UDCA)- or cholestyramine (CT)-enriched diet, bile duct ligation (BDL), cholic acid (CA)-enriched diet, and TGR5 agonist (RO) treatments. We thereby studied the impact of TGR5 on: BA composition, liver injury, regeneration and survival. We also performed analyses on the gut microbiota (GM) and gallbladder (GB). Liver BA composition was analysed in patients undergoing major hepatectomy. RESULTS: The TGR5-KO hyperhydrophobic BA composition was not directly related to altered BA synthesis, nor to TGR5-KO GM dysbiosis, as supported by hepatocyte-specific KO mice and co-housing experiments, respectively. The TGR5-dependent control of GB dilatation was crucial for BA composition, as determined by experiments including RO treatment and/or cholecystectomy. The poor TGR5-KO post-EH survival rate, related to exacerbated peribiliary necrosis and BA overload, was improved by shifting BAs toward a less toxic composition (CT treatment). After either BDL or a CA-enriched diet with or without cholecystectomy, we found that GB dilatation had strong TGR5-dependent hepatoprotective properties. In patients, a more hydrophobic liver BA composition was correlated with an unfavourable outcome after hepatectomy. CONCLUSIONS: BA composition is crucial for hepatoprotection in mice and humans. We indicate TGR5 as a key regulator of BA profile and thereby as a potential hepatoprotective target under BA overload conditions. LAY SUMMARY: Through multiple in vivo experimental approaches in mice, together with a patient study, this work brings some new light on the relationships between biliary homeostasis, gallbladder function, and liver protection. We showed that hepatic bile acid composition is crucial for optimal liver repair, not only in mice, but also in human patients undergoing major hepatectomy.

7.
mSphere ; 5(4)2020 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-32611705

RESUMO

The genotoxin colibactin produced by resident bacteria of the gut microbiota may have tumorigenic effect by inducing DNA double-strand breaks in host cells. Yet, the effect of colibactin on gut microbiota composition and functions remains unknown. To address this point, we designed an experiment in which pregnant mice were colonized with the following: (i) a commensal Escherichia coli strain, (ii) a commensal E. coli strain plus a genotoxic E. coli strain, (iii) a commensal E. coli strain plus a nongenotoxic E. coli mutant strain unable to produce mature colibactin. Then, we analyzed the gut microbiota in pups at day 15 and day 35 after birth. At day 15, mice that were colonized at birth with the genotoxic strain showed lower levels of Proteobacteria and taxa belonging to the Proteobacteria, a modest effect on overall microbial diversity, and no effect on gut microbiome. At day 35, mice that received the genotoxic strain showed lower Firmicutes and taxa belonging to the Firmicutes, together with a strong effect on overall microbial diversity and higher microbial functions related to DNA repair. Moreover, the genotoxic strain strongly affected gut microbial diversity evolution of pups receiving the genotoxic strain between day 15 and day 35. Our data show that colibactin, beyond targeting the host, may also exert its genotoxic effect on the gut microbiota.IMPORTANCE Infections of genotoxic Escherichia coli spread concomitantly with urbanized progression. These bacteria may prompt cell senescence and affect DNA stability, inducing cancer via the production of colibactin, a genotoxin shown capable of affecting host DNA in eukaryotic cells. In this study, we show that the action of colibactin may also be directed against other bacteria of the gut microbiota in which genotoxic E. coli bacteria have been introduced. Indeed, the presence of genotoxic E. coli induced a change in both the structure and function of the gut microbiota. Our data indicate that genotoxic E. coli may use colibactin to compete for gut niche utilization.


Assuntos
Escherichia coli/fisiologia , Microbioma Gastrointestinal , Mutagênicos , Peptídeos/genética , Animais , Bactérias/classificação , Dano ao DNA , Escherichia coli/genética , Feminino , Interações entre Hospedeiro e Microrganismos , Camundongos , Peptídeos/metabolismo , Policetídeos/metabolismo , Gravidez , Organismos Livres de Patógenos Específicos , Simbiose
8.
J Clin Med ; 9(7)2020 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-32709038

RESUMO

BACKGROUND: Necrotizing enterocolitis (NEC) is a devastating condition in preterm infants due to multiple factors, including gut microbiota dysbiosis. NEC development is poorly understood, due to the focus on severe NEC (NEC-2/3). METHODS: We studied the gut microbiota, microbiome and metabolome of children with suspected NEC (NEC-1). RESULTS: NEC-1 gut microbiota had a higher abundance of the Streptococcus (second 10-days of life) and Staphylococcus (third 10-days of life) species. NEC-1 children showed a microbiome evolution in the third 10-days of life being the most divergent, and were associated with a different metabolomic signature than in healthy children. The NEC-1 microbiome had increased glycosaminoglycan degradation and lysosome activity by the first 10-days of life, and was more sensitive to childbirth, low birth weight and gestational age, than healthy microbiome. NEC-1 fecal metabolome was more divergent by the second month of life. CONCLUSIONS: NEC-1 gut microbiota and microbiome modifications appear more distinguishable by the third 10-days of life, compared to healthy children. These data identify a precise window of time (i.e., the third 10-days of life) and provide microbial targets to fight/blunt NEC-1 progression.

9.
Rev Endocr Metab Disord ; 20(4): 449-459, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31741266

RESUMO

It has recently become evident that the periodontium (gingiva, desmodontal ligament, cementum and alveolar bone) and the associated microbiota play a pivotal role in regulating human health and diseases. The oral cavity is the second largest microbiota in the body with around 500 different bacterial species identified today. When disruption of oral cavity and dysbiosis occur, the proportion of strict anaerobic Gram-negative bacteria is then increased. Patients with periodontitis present 27 to 53% more risk to develop diabetes than the control population suggesting that periodontitis is an aggravating factor in the incidence of diabetes. Moreover, dysbiosis of oral microbiota is involved in both periodontal and metabolic disorders (cardiovascular diseases, dyslipidaemia …). The oral diabetic dysbiosis is characterized by a specific bacteria Porphyromonas, which is highly expressed in periodontal diseases and could exacerbate insulin resistance. In this review, we will address the nature of the oral microbiota and how it affects systemic pathologies with a bidirectional interaction. We also propose that using prebiotics like Akkermansia muciniphila may influence oral microbiota as novel therapeutic strategies. The discovery of the implication of oral microbiota for the control of metabolic diseases could be a new way for personalized medicine.


Assuntos
Doenças Metabólicas/microbiologia , Boca/microbiologia , Periodontite/microbiologia , Animais , Humanos , Doenças Metabólicas/metabolismo , Boca/metabolismo , Periodontite/metabolismo , Fatores de Risco
10.
Nat Commun ; 10(1): 3224, 2019 07 19.
Artigo em Inglês | MEDLINE | ID: mdl-31324782

RESUMO

Proteolytic homeostasis is important at mucosal surfaces, but its actors and their precise role in physiology are poorly understood. Here we report that healthy human and mouse colon epithelia are a major source of active thrombin. We show that mucosal thrombin is directly regulated by the presence of commensal microbiota. Specific inhibition of luminal thrombin activity causes macroscopic and microscopic damage as well as transcriptomic alterations of genes involved in host-microbiota interactions. Further, luminal thrombin inhibition impairs the spatial segregation of microbiota biofilms, allowing bacteria to invade the mucus layer and to translocate across the epithelium. Thrombin cleaves the biofilm matrix of reconstituted mucosa-associated human microbiota. Our results indicate that thrombin constrains biofilms at the intestinal mucosa. Further work is needed to test whether thrombin plays similar roles in other mucosal surfaces, given that lung, bladder and skin epithelia also express thrombin.


Assuntos
Bactérias/metabolismo , Biofilmes , Microbioma Gastrointestinal/fisiologia , Mucosa Intestinal/microbiologia , Trombina/metabolismo , Animais , Linhagem Celular , Colo/microbiologia , Neoplasias do Colo/microbiologia , Epitélio/microbiologia , Homeostase , Humanos , Pulmão , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Pele , Trombina/genética , Bexiga Urinária
11.
Mol Nutr Food Res ; 63(17): e1900403, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-31206248

RESUMO

SCOPE: Targeting gut microbiota dysbiosis by prebiotics is effective, though side effects such as abdominal bloating and flatulence may arise following high prebiotic consumption over weeks. The aim is therefore to optimize the current protocol for prebiotic use. METHODS AND RESULTS: To examine the prebiotic properties of plant extracts, two independent studies are conducted in ob/ob mice, over two weeks. In the first study, Porphyra umbilicalis and Melissa officinalis L. extracts are evaluated; in the second study, a high vs low dose of an Emblica officinalis Gaertn extract is assessed. These plant extracts affect gut microbiota, caecum metabolome, and induce a significant lower plasma triacylglycerols (TG) following treatment with P. umbilicalis and significantly higher plasma free fatty acids (FFA) following treatment with the low-dose of E. officinalis Gaertn. Glucose- and insulin-tolerance are not affected but white adipose tissue and liver gene expression are modified. In the first study, IL-6 hepatic gene expression is significantly (adjusted p = 0.0015) and positively (r = 0.80) correlated with the bacterial order Clostridiales in all mice. CONCLUSION: The data show that a two-week treatment with plant extracts affects the dysbiotic gut microbiota and changes both caecum metabolome and markers of lipid metabolism in ob/ob mice.


Assuntos
Ceco/efeitos dos fármacos , Microbioma Gastrointestinal/efeitos dos fármacos , Metabolismo dos Lipídeos/efeitos dos fármacos , Extratos Vegetais/farmacologia , Tecido Adiposo Branco/efeitos dos fármacos , Tecido Adiposo Branco/fisiologia , Animais , Biomarcadores/sangue , Peso Corporal/efeitos dos fármacos , Ceco/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Glucose/metabolismo , Fígado/efeitos dos fármacos , Fígado/fisiologia , Masculino , Melissa/química , Camundongos Endogâmicos C57BL , Camundongos Obesos , Phyllanthus emblica/química , Porphyra/química , Prebióticos , Fatores de Tempo
13.
Biochimie ; 159: 72-80, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30703476

RESUMO

The identification of a functional molecular moiety relating the lipopolysaccharides (LPSs) to their capacity to induce inflammation-mediated metabolic diseases needed to be performed. We previously described a proportional increase in the relative abundance of the 16 SrDNA bacterial gene from the genus Ralstonia, within the microbiota from the adipose tissue stroma vascular fraction of obese patients, suggesting a causal role of the bacteria. Therefore, we first characterized the structures of the lipids A, the inflammatory inducing moieties of LPSs, of three Ralstonia species: Ralstonia eutropha, R. mannitolilytica and R. pickettii, and then compared each, in terms of in vitro inflammatory capacities. R. pickettii lipid A displaying only 5 Fatty Acids (FA) was a weaker inducer of inflammation, compared to the two other species harboring hexa-acylated lipids A, despite the presence of 2 AraN substituents on the phosphate groups. With regard to in vitro pro-inflammatory activities, TNF-α and IL-6 inducing capacities were compared on THP-1 cells treated with LPSs isolated from the three Ralstonia. R. pickettii, with low inflammatory capacities, and recently involved in nosocomial outcomes, could explain the low inflammatory level reported in previous studies on diabetic patients and animals. In addition, transmission electron microscopy was performed on the three Ralstonia species. It showed that the R. pickettii under-acylated LPSs, with a higher level of phosphate substitution had the capacity of producing more outer membrane vesicles (OMVs). The latter could facilitate transfer of LPSs to the blood and explain the increased low-grade inflammation observed in obese/diabetic patients.


Assuntos
Citocinas/metabolismo , Lipídeo A , Obesidade/microbiologia , Ralstonia , Humanos , Inflamação/induzido quimicamente , Inflamação/metabolismo , Inflamação/patologia , Lipídeo A/química , Lipídeo A/metabolismo , Lipídeo A/toxicidade , Ralstonia/química , Ralstonia/isolamento & purificação , Ralstonia/metabolismo , Relação Estrutura-Atividade , Células THP-1
14.
J Dent ; 79: 53-60, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30292825

RESUMO

OBJECTIVE: Elite athletes are prone to develop oral diseases, which could increase the risk for injuries. The aim of this study was to evaluate the oral health and the composition of oral microbiota of elite rugby players compared to the general population. METHODS: We set up a case-control study by screening 24 professional rugby players (PRG) and 22 control patients (CG) for dental and gingival examinations and performed a taxonomic analysis and a predicted functional analysis of oral microbiota. RESULTS: The Decay, Missing and Filled (DMF) teeth index (5.54 ± 6.18 versus 2.14 ± 3.01; p = 0.01) and the frequency of gingivitis (58,33% versus 13.63%) were significantly increased in PRG compared to CG. PRG were characterized by a dysbiotic oral microbiota (Shannon Index: 3.32 ± 0.62 in PRG versus 3.79 ± 0.68 in CG; p = 0.03) with an increase of Streptococcus (58.43 ± 16.84 versus 42.60 ± 17.45; p = 0.005), the main genus implicated in caries. Predicted metagenomics of oral microbiota in rugby players was suggestive of a cariogenic metagenome favourable to the development of caries. CONCLUSIONS: Our study shows that the oral health of PRG was poorer than the general population. PRG are characterized by a dysbiotic oral microbiota with an increase of the relative abundance of Streptococcus genus, positively correlated to the weight and negatively correlated to the diversity of oral microbiota. CLINICAL SIGNIFICANCE: Dental screening should be included in the medical follow-up of professional rugby players as a part of their health management. New strategies such as using probiotics like Lactobacillus could help to control the dysbiosis of oral microbiota.


Assuntos
Atletas , Microbiota , Saúde Bucal , Estudos de Casos e Controles , Futebol Americano , Humanos , Esportes
16.
Nat Med ; 24(7): 1070-1080, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29942096

RESUMO

Hepatic steatosis is a multifactorial condition that is often observed in obese patients and is a prelude to non-alcoholic fatty liver disease. Here, we combine shotgun sequencing of fecal metagenomes with molecular phenomics (hepatic transcriptome and plasma and urine metabolomes) in two well-characterized cohorts of morbidly obese women recruited to the FLORINASH study. We reveal molecular networks linking the gut microbiome and the host phenome to hepatic steatosis. Patients with steatosis have low microbial gene richness and increased genetic potential for the processing of dietary lipids and endotoxin biosynthesis (notably from Proteobacteria), hepatic inflammation and dysregulation of aromatic and branched-chain amino acid metabolism. We demonstrated that fecal microbiota transplants and chronic treatment with phenylacetic acid, a microbial product of aromatic amino acid metabolism, successfully trigger steatosis and branched-chain amino acid metabolism. Molecular phenomic signatures were predictive (area under the curve = 87%) and consistent with the gut microbiome having an effect on the steatosis phenome (>75% shared variation) and, therefore, actionable via microbiome-based therapies.


Assuntos
Diabetes Mellitus/genética , Metagenômica , Hepatopatia Gordurosa não Alcoólica/genética , Obesidade/genética , Animais , Células Cultivadas , Estudos de Coortes , Fatores de Confusão Epidemiológicos , Transplante de Microbiota Fecal , Feminino , Hepatócitos/metabolismo , Humanos , Metaboloma , Metabolômica , Camundongos , Microbiota , Fenótipo , Transcriptoma/genética
17.
J Mol Biol ; 430(5): 581-590, 2018 03 02.
Artigo em Inglês | MEDLINE | ID: mdl-29374557

RESUMO

Alterations of both ecology and functions of gut microbiota are conspicuous traits of several inflammatory pathologies, notably metabolic diseases such as obesity and type 2 diabetes. Moreover, the proliferation of enterobacteria, subdominant members of the intestinal microbial ecosystem, has been shown to be favored by Western diet, the strongest inducer of both metabolic diseases and gut microbiota dysbiosis. The inner interdependence between the host and the gut microbiota is based on a plethora of molecular mechanisms by which host and intestinal microbes modify each other. Among these mechanisms are as follows: (i) the well-known metabolic impact of short chain fatty acids, produced by microbial fermentation of complex carbohydrates from plants; (ii) a mutual modulation of miRNAs expression, both on the eukaryotic (host) and prokaryotic (gut microbes) side; (iii) the production by enterobacteria of virulence factors such as the genotoxin colibactin, shown to alter the integrity of host genome and induce a senescence-like phenotype in vitro; (iv) the microbial excretion of outer-membrane vesicles, which, in addition to other functions, may act as a carrier for multiple molecules such as toxins to be delivered to target cells. In this review, I describe the major molecular mechanisms by which gut microbes exert their metabolic impact at a multi-organ level (the gut barrier being in the front line) and support the emerging triad of metabolic diseases, gut microbiota dysbiosis and enterobacteria infections.


Assuntos
Disbiose/metabolismo , Infecções por Enterobacteriaceae/metabolismo , Enterobacteriaceae/patogenicidade , Microbioma Gastrointestinal/fisiologia , Interações entre Hospedeiro e Microrganismos , Doenças Metabólicas/metabolismo , Toxinas Bacterianas/metabolismo , Metabolismo dos Carboidratos , Ácidos Graxos/metabolismo , Interações entre Hospedeiro e Microrganismos/fisiologia , Interações Hospedeiro-Patógeno/fisiologia , MicroRNAs/metabolismo , Mutagênicos/metabolismo , Peptídeos/metabolismo , Policetídeos/metabolismo , Fatores de Virulência/metabolismo
18.
Mol Nutr Food Res ; 62(3)2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29105287

RESUMO

SCOPE: To examine the potential relationship among gene expression markers of adipose tissue browning, gut microbiota, and insulin sensitivity in humans. METHODS AND RESULTS: Gut microbiota composition and gene markers of browning are analyzed in subcutaneous (SAT) and visceral (VAT) adipose tissue from morbidly obese subjects (n = 34). Plasma acetate is measured through 1 H NMR and insulin sensitivity using euglycemic hyperinsulinemic clamp. Subjects with insulin resistance show an increase in the relative abundance (RA) of the phyla Bacteroidetes and Proteobacteria while RA of Firmicutes is decreased. In all subjects, Firmicutes RA is negatively correlated with HbA1c and fasting triglycerides, whereas Proteobacteria RA was negatively correlated with insulin sensitivity. Firmicutes RA is positively associated with markers of brown adipocytes (PRDM16, UCP1, and DIO2) in SAT, but not in VAT. Multivariate regression analysis indicates that Firmicutes RA contributes significantly to SAT PRDM16, UCP1, and DIO2 mRNA variance after controlling for age, BMI, HbA1c , or insulin sensitivity. Interestingly, Firmicutes RA, specifically those bacteria belonging to the Ruminococcaceae family, is positively associated with plasma acetate levels, which are also linked to SAT PRDM16 mRNA and insulin sensitivity. CONCLUSION: Gut microbiota composition is linked to adipose tissue browning and insulin action in morbidly obese subjects, possibly through circulating acetate.


Assuntos
Acetatos/sangue , Tecido Adiposo/fisiologia , Microbioma Gastrointestinal/fisiologia , Obesidade Mórbida/microbiologia , Tecido Adiposo/fisiopatologia , Tecido Adiposo Branco/metabolismo , Tecido Adiposo Branco/fisiopatologia , Adulto , Biomarcadores , Proteínas de Ligação a DNA/genética , Feminino , Transportador de Glucose Tipo 4/genética , Humanos , Proteínas Substratos do Receptor de Insulina/genética , Resistência à Insulina , Iodeto Peroxidase/genética , Masculino , Pessoa de Meia-Idade , Obesidade Mórbida/fisiopatologia , Fatores de Transcrição/genética , Proteína Desacopladora 1/genética
19.
Nat Med ; 23(7): 850-858, 2017 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-28530702

RESUMO

Metformin is widely used in the treatment of type 2 diabetes (T2D), but its mechanism of action is poorly defined. Recent evidence implicates the gut microbiota as a site of metformin action. In a double-blind study, we randomized individuals with treatment-naive T2D to placebo or metformin for 4 months and showed that metformin had strong effects on the gut microbiome. These results were verified in a subset of the placebo group that switched to metformin 6 months after the start of the trial. Transfer of fecal samples (obtained before and 4 months after treatment) from metformin-treated donors to germ-free mice showed that glucose tolerance was improved in mice that received metformin-altered microbiota. By directly investigating metformin-microbiota interactions in a gut simulator, we showed that metformin affected pathways with common biological functions in species from two different phyla, and many of the metformin-regulated genes in these species encoded metalloproteins or metal transporters. Our findings provide support for the notion that altered gut microbiota mediates some of metformin's antidiabetic effects.


Assuntos
DNA Bacteriano/análise , Diabetes Mellitus Tipo 2/tratamento farmacológico , Microbioma Gastrointestinal/genética , Hipoglicemiantes/uso terapêutico , Metformina/uso terapêutico , Animais , Ácidos e Sais Biliares/metabolismo , Diabetes Mellitus Tipo 2/microbiologia , Método Duplo-Cego , Ácidos Graxos Voláteis/metabolismo , Transplante de Microbiota Fecal , Fezes/química , Fezes/microbiologia , Feminino , Vida Livre de Germes , Teste de Tolerância a Glucose , Humanos , Técnicas In Vitro , Masculino , Metagenômica , Camundongos , Pessoa de Meia-Idade
20.
Mol Syst Biol ; 13(3): 921, 2017 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-28302863

RESUMO

Gut microbiota dysbiosis has been implicated in a variety of systemic disorders, notably metabolic diseases including obesity and impaired liver function, but the underlying mechanisms are uncertain. To investigate this question, we transferred caecal microbiota from either obese or lean mice to antibiotic-free, conventional wild-type mice. We found that transferring obese-mouse gut microbiota to mice on normal chow (NC) acutely reduces markers of hepatic gluconeogenesis with decreased hepatic PEPCK activity, compared to non-inoculated mice, a phenotypic trait blunted in conventional NOD2 KO mice. Furthermore, transferring of obese-mouse microbiota changes both the gut microbiota and the microbiome of recipient mice. We also found that transferring obese gut microbiota to NC-fed mice then fed with a high-fat diet (HFD) acutely impacts hepatic metabolism and prevents HFD-increased hepatic gluconeogenesis compared to non-inoculated mice. Moreover, the recipient mice exhibit reduced hepatic PEPCK and G6Pase activity, fed glycaemia and adiposity. Conversely, transfer of lean-mouse microbiota does not affect markers of hepatic gluconeogenesis. Our findings provide a new perspective on gut microbiota dysbiosis, potentially useful to better understand the aetiology of metabolic diseases.


Assuntos
Dieta Hiperlipídica/efeitos adversos , Microbioma Gastrointestinal/fisiologia , Fígado/metabolismo , Obesidade/microbiologia , Animais , Disbiose , Gluconeogênese , Glucose-6-Fosfatase/genética , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/induzido quimicamente , Obesidade/genética , Fosfoenolpiruvato Carboxiquinase (ATP)/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...